PhysicsAndMathsTutor.com

June 2015 (IAL)

1. The line
$$l_1$$
 has equation

$$10x - 2y + 7 = 0$$
(a) Find the gradient of l_1
(b) Find the equation of l_2 in the form $y = mx + c$, where m and c are constants.

(a)
$$\begin{array}{c}
(1) \\
(2) \\
(3) \\
(4) \\
(4) \\
(5) \\
(7) \\
(8) \\
(9) \\
(9) \\
(9) \\
(1) \\
(1) \\
(1) \\
(1) \\
(2) \\
(3) \\
(4) \\
(4) \\
(5) \\
(7) \\
(7) \\
(8) \\
(9) \\
(9) \\
(9) \\
(1) \\
(1) \\
(1) \\
(1) \\
(2) \\
(3) \\
(4) \\
(5) \\
(7) \\
(7) \\
(8) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\
(9) \\$$

C12 PhysicsAndMathsTutor.com June 2015 (IAL)

2.
$$f(x) = x^4 - x^3 + 3x^2 + ax + b$$

where a and b are constants.

When $f(x)$ is divided by $(x - 1)$ the remainder is 4

When $f(x)$ is divided by $(x + 2)$ the remainder is 22

Find the value of a and the value of b .

$$f(1) = (1)^4 - (1)^3 + 3(1)^2 + a(1) + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 1$$

$$a + b = 2$$

$$b - 2a = -14$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 4$$

$$a + b = 4$$

$$b - 2a = -14$$

$$1 - 1 + 3 + a + b = 4$$

$$a + b = 4$$

$$a + b = 4$$

$$a + b = 4$$

$$b - 2a = -14$$

$$a + b = 2$$

$$1 - 1 + 3 + a + b = 4$$

$$1 - 1 + 3 + a + b = 4$$

$$2 - 2 + 3 + 3 + a + b = 4$$

$$3 - 3 + 3 + 3 + a + b = 4$$

$$4 + 3 + 3 + 3 + 3 + 4 + 4$$

$$4 + 3 + 3 + 3 + 3 + 4 + 4$$

$$4 + 3 + 3 + 3 + 4 + 4 + 4$$

$$4 + 3 + 3 + 3 + 3 + 4 + 4$$

$$4 + 3 + 3 + 3 + 3 + 4 + 4$$

$$4 + 3 + 3 + 3 + 3 + 4 + 4$$

$$4 + 3 + 3 + 3 + 4 + 4 + 4$$

$$4 + 3 + 3 + 3 + 3 + 4 + 4$$

$$4 + 3 + 3 + 3 + 3 + 4 + 4$$

$$4 + 3 + 3 + 3 + 4 + 4 + 4$$

$$4 + 3 + 3 + 3 + 4 + 4 + 4$$

$$4 + 3 + 3 + 3 + 4 + 4 + 4$$

$$4 + 3 + 3 + 3 + 4 + 4 + 4$$

$$4 + 3 + 3 + 3 + 4 + 4$$

3. Given that
$$y = \frac{1}{27}x^3$$
 express each of the following in the form kx^n where k and n are constants.

(a) $y^{\frac{1}{3}}$

(b) $3y^{-1}$

(1)

June 2015 (IAL)

$$y''^{3} = \left(\frac{1}{27} \times^{3}\right)^{1/3} = \frac{1}{3} \times^{1}$$

$$3y^{-1} = 3\left(\frac{1}{27} \times^{3}\right)^{-1} = 3\left(27\right) \times^{-3} = 81 \times^{-3}$$

(c) $\sqrt{(27y)}$

4. (a) Sketch the graph of
$$y = \frac{1}{x}$$
, $x > 0$ (2)

June 2015 (IAL)

Leave blank

C12

The table below shows corresponding values of x and y for $y = \frac{1}{x}$, with the values for y rounded to 3 decimal places where necessary.

tues for y rounded to 3 decimal places where necessary.						
	x	1	1.5	2	2.5	3
	v	1	0.667	0.5	0.4	0.333

(b) Use the trapezium rule with all the values of y from the table to find an

approximate value, to 2 decimal places, for
$$\int_{1}^{3} \frac{1}{x} dx$$

$$\int_{1}^{3} \frac{1}{x} dx \approx \frac{1}{2} (0.3) \left[1 + 0.333 + 2 (0.667 + 0.5 + 0.4) \right]$$

$$= \left[-12 \left(2 d\rho \right) \right]$$

6. (a) Find the first 3 terms in ascending powers of
$$x$$
 of the binomial expansion of
$$(2 + ax)^6$$
where a is a non-zero constant. Give each term in its simplest form.

(4)

Given that, in the expansion, the coefficient of x is equal to the coefficient of x^2
(b) find the value of a .

(2)

(2)

(2)

June 2015 (IAL)

$$= 64 + 192ax + 240a^{2}x^{2}$$

$$192a = 240a^{2}$$

10. A sequence is defined by

$$u_{1} = 4$$

$$u_{n+1} = \frac{2u_{n}}{3}, \quad n \ge 1$$

(a) Find the exact values of u_{2} , u_{3} and u_{4}

(b) Find the value of u_{20} , giving your answer to 3 significant figures.

(c) Evaluate

$$12 - \sum_{i=1}^{16} u_{i}$$

giving your answer to 3 significant figures.

(d) Explain why $\sum_{i=1}^{N} u_{i} < (12 \text{ for all positive integer values of } N$.

(1)

(a) $u_{1} = 2 + \frac{2}{3} \times \frac{16}{3} = \frac{32}{3} \times \frac{16}{3} = \frac{32}{3}$

11. The curve C has equation
$$y = f(x), x > 0$$
, where
$$f'(x) = 3\sqrt{x} - \frac{9}{\sqrt{x}} + 2$$
Given that the point $P(9, 14)$ lies on C ,
(a) find $f(x)$, simplifying your answer,
(b) find an equation of the normal to C at the point P , giving your answer in the form $ax + by + c = 0$ where a, b and c are integers.

$$f'(x) = 3 \times \frac{1}{2} - 9 \times \frac{1}{2} + 2$$

$$f(x) = \frac{2}{3} - 3 \times \frac{3}{2} - 2 (9) \times \frac{1}{2} + 2 \times + C$$

$$f(q) = 2 (9)^{3/2} - 18 (9)^{1/2} + 2 (9) + C = 14$$

$$5 + 4 + 18 + C = 14$$

$$C = -4$$

$$\Rightarrow f(x) = 2 \times \frac{3}{2} - 18 \times \frac{1}{2} + 2 \times -4$$

C12

June 2015 (IAL)

Leave blank

$$f(9) = 2(9)^{3/2} - 18(9)^{1/2} + 2(9) + (=14)$$

$$54 - 54 + 18 + C = 14$$

$$C = -4$$

$$\Rightarrow f(x) = 2x^{3/2} - 18x^{1/2} + 2x - 4$$

$$f'(9) = 3(9)^{1/2} - 9(9)^{-1/2} + 2 = 9 - 3 + 2$$

$$= 8$$

$$\Rightarrow m_{N} = -\frac{1}{8}$$

$$y - y = m(x - x)$$

$$y - 14 = -\frac{1}{8}(x - 9)$$

$$8y - 112 = -x + 9$$

$$x + 8y - 121 = 0$$

C12

PhysicsAndMathsTutor.com

June 2015 (IAL)

Question 15 continued

$$M_{PA} = \frac{7-6}{12-5} = \frac{1}{7}$$
 $y - y = m(x - x_1)$
 $y - 7 = -7(x - (2))$
 $y = 9(1 - 7x)$
 $a^2 = (12 - 4)^2 + (13 - 7)^2 = 160$
 $c^2 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^3 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^4 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$
 $c^5 = (12 - 4)^2 + (2 - 1)^2 = 180$

16. [In this question you may assume the formula for the area of a circle and the

a sphere of radius r has volume $V = \frac{4}{3}\pi r^3$ and surface area $S = 4\pi r^2$

Leave blank

June 2015 (IAL)

a cylinder of radius r and height h has volume $V = \pi r^2 h$ and curved surface area $S = 2\pi rh$

following formulae:

Figure 5 shows the model for a building. The model is made up of three parts. The roof is modelled by the curved surface of a hemisphere of radius R cm. The walls are modelled by the curved surface of a circular cylinder of radius R cm and height H cm. The floor is modelled by a circular disc of radius R cm. The model is made of material of negligible thickness, and the walls are perpendicular to the base.

(a) Show that

minimum.

for R.

hat
$$H = \frac{800}{R^2} - \frac{2}{3}R$$

$$A, A ext{ cm}^2$$
, of the model is \S

(b) Show that the surface area, $A \text{ cm}^2$, of the model is given by

It is given that the volume of the model is 800π cm³ and that 0 < R < 10.6

the surface area,
$$A \text{ cm}^2$$
, of the model is
$$A = \frac{5\pi R^2}{3} + \frac{1600\pi}{R}$$

value of
$$R$$
, to 3 significant figures, for which A is a

(d) Prove that this value of R gives a minimum value for A.

(2)

(3)

(5)

(2)

(1)

